

Encircled Flux (EF) Modal Controller

Technology improvements continue to push the envelope on multimode fibre optic networks. Ever increasing bandwidth requires tighter specifications (lower loss connectors, splices, etc.). Shrinking loss budgets in turn place higher demands on loss test sets for accurate and repeatable measurements.

Encircled Flux (EF) testing requirements attempt to improve loss test set performance by placing defined parameters on optical test signals emitted from multimode loss test sources. AFL Modal Controller Jumpers (MCJs) are simple to use while ensuring the output test signal conforms to EF specifications regardless of the multimode test source used.

Features

- EF Compliant to TIA-526-14-B and IEC 621180-4-1
- Improves multimode measurement repeatability
- Optimised at 850 nm
- Compatible with 50/125 and 62.6/125 μm multimode test sets

Applications

- Ensures test source launch is EF Compliant (remove uncertainty)
- USE AFL MCJs to certify networks per today's EF requirements with legacy loss test sets.

Simple-to-use

Plug MCJ input into an LED multimode test source and you have an EF compliant output meeting TIA-568-14-B and IEC 621180-4-1.

Specifications

MAXIMUM POWER	10 mW
Insertion Loss @ 850 nm	< 3 dB 50/62.5 μm
Connectors	Reference Grade
Input Cable Length	1.0 m
Output Cable Length	1.0 m
Weight	50 g

Ordering Information

PART NUMBER	FIBRE SIZE	CONNECTORS
TLL-S3FCFC2M-EF	50/125 μm	FC to FC
TLL-S6FCFC2M-EF	62.5/125 μm	FC to FC
TLL-S3SCSC2M-EF	50/125 μm	SC to SC
TLL-S6SCSC2M-EF	62.5/125 μm	SC to SC
TLL-S3SCLC2M-EF	50/125 μm	SC to LC
TLL-S6SCSL2M-EF	62.5/125 μm	SC to LC

